PPIOPPIO10-09 17:03

R语言的scale函数

1、数据的中心化

所谓数据的中心化是指数据集中的各项数据减去数据集的均值。

例如有数据集1, 2, 3, 6, 3,其均值为3

那么中心化之后的数据集为1-3,2-3,3-3,6-3,3-3,即:-2,-1,0,3,0

2、数据的标准化

所谓数据的标准化是指中心化之后的数据在除以数据集的标准差,即数据集中的各项数据减去数据集的均值再除以数据集的标准差。

例如有数据集1, 2, 3, 6, 3,其均值为3,其标准差为1.87

那么标准化之后的数据集为(1-3)/1.87,(2-3)/1.87,(3-3)/1.87,(6-3)/1.87,(3-3)/1.87,即:-1.069,-0.535,0,1.604,0

 

数据中心化和标准化的意义是一样的,为了消除量纲对数据结构的影响。

在R语言中可以使用scale方法来对数据进行中心化和标准化:

#限定输出小数点后数字的位数为3位

> options(digits=3)
> data <- c(1, 2, 3, 6, 3)

#数据中心化

> scale(data, center=T,scale=F)
[,1] [1,] -2 [2,] -1 [3,] 0 [4,] 3 [5,] 0
attr(,"scaled:center")
[1] 3

#数据标准化

> scale(data, center=T,scale=T)
[1,] -1.06904 [2,] -0.53452 [3,] 0.00000 [4,] 1.60357 [5,] 0.00000 
attr(,"scaled:center")
[1] 3
attr(,"scaled:scale")
[1] 1.8708

 

scale方法中的两个参数center和scale的解释:

1)center和scale默认为真,即T或者TRUE

2)center为真表示数据中心化

3)scale为真表示数据标准化

 

程序之家二维码

小额赞赏

000
评论